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first converted to total path lengths. The theoretical 
curve of Lindhard et al.4 has been computed for k== 0.16, 
a value that is appropriate to all the data under con
sideration. I t is seen that both the present results and 
those of Bryde et al.10 are in very good agreement with 
the theoretical curve over the entire energy range 
covered in these studies. This agreement substantiates 
the belief that Lindhard's theory may be validly applied 
to the analysis of thick-target recoil data up to moder
ately high recoil energies. 

The data of Van Lint et al.9 lie well above the theo
retical curve. Although these results do not quite over
lap in recoil energy with the present data, it appears 
that the two sets of results are mutually inconsistent. 
This is probably related to the fact that it is difficult to 
obtain an accurate estimate of the recoil energy from a 
(y,n) reaction induced by bremsstrahlung. 

The low-energy data may also be compared with the 

I. INTRODUCTION 

IT is well known that the transverse energy of elec
tron or hole states in a magnetic field will be quan

tized, the allowed energies being called Landau levels 
and the spacing between levels being proportional to the 
field strength H. Since the electron has a spin degree of 
freedom, each Landau level has a twofold degeneracy 
arising from spin. Associated with the spin is a magnetic 
moment whose energy Em in the magnetic field is also 
proportional to the field strength. This energy is often 
written Em^^gPoH, (30 being the Bohr magneton and g 
being denoted the effective g factor. This energy may 
add to or subtract from the energy of the Landau level, 
thus splitting each level into a pair of levels. The den
sity of states at the Fermi level in a magnetic field is 
determined to a large extent by the spacing and split-

Monte Carlo calculation of Oen et al.5 of the ranges of 
low-energy atoms in solids. Their results for the total 
path length of Cu atoms slowing down in Cu have been 
transformed to p—e coordinates and are shown by the 
dashed line in Fig. 2. This curve, based on Bohr's value 
for the screening length, predicts range values that are 
significantly larger than the present results. The calcu
lated curve can be brought into better agreement with 
experiment by increasing the screening length, as sug
gested by Oen et al.b 
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ting of the Landau levels. This paper reports on oscil
lations in the magnetoresistance of bismuth which result 
from a change in scattering time as the density of states 
at the Fermi level is changed by the magnetic field. 
Previously unobserved oscillations are seen at high field 
which are attributed to spin splitting of the hole band. 
With the magnetic field parallel to the binary axis, oscil
lations from the heavy electron mass are observed and 
the spin splitting is found to be different than the 
Landau spacing. 

The magnitude of the g factor depends on details of 
the band structure. For free electrons, g=2. The g 
factor for electrons in* bismuth was calculated by 
Cohen and Blount1 to be g=2mo/mc, mc being the cyclo
tron effective mass. This value of g factor yields a spin 

1 M. H. Cohen and E. I. Blount, Phil. Mag. 5, 115 (1960). 
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Shubnikov-de Haas type oscillations have been studied in bismuth in magnetic fields up to 88 kG. Oscil
lations are observed which have been attributed to the hole band in bismuth. A machine calculation of the 
density of states and of the Fermi level as a function of magnetic field is used to fit the data. The calculation 
is based on the nonparabolic (two-band) model of the electron band, and includes the possibility of spin split
ting for both electrons and holes. It correctly predicts the observed change in Fermi energy with magnetic 
field. We find that the hole Landau levels are indeed split by spin. The spin splitting is almost twice the 
Landau level spacing along the trigonal axis and is extremely small perpendicular to the trigonal axis. Spin 
splitting is also observed for electrons. We find that the spin splitting is about one-third the orbital splitting 
in the heaviest mass direction and about 10% larger than the orbital splitting in the light mass direction. 
Our observations imply that there are important states both above and below the hole band. This is in direct 
contradiction to the Abrikosov and Falkovskii model which considers only one set of states (either above the 
hole band or below) with which the hole band interacts. 
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splitting equal to the Landau level spacing and has been 
generally verified by the phase of observed de Haas-van 
Alphen oscillations2 and by infrared magnetoreflection 
experiments.3 A 10% departure from g~2m^/mc has 
been reported4 for the light electron mass with the mag
netic field parallel to the binary axis, de Haas-van 
Alphen oscillations attributed to holes have been ob
served at low magnetic field by Brandt5 but no spin 
splitting was reported. 

A recent model of the bismuth band structure pro
posed by Abrikosov and Falkovskii6 has been used by 
Falkovskii7 to calculate the energy levels of the holes in 
a magnetic field parallel to the trigonal axis. This model 
leads to a spin splitting equal to the Landau level 
spacing so that separate periods for spin and orbital 
splitting cannot be observed. Our observations are in 
definite disagreement with this model and indicate that 
there are important states both above and below the 
hole band which are neglected in the Abrikosov-
Falkovskii model. 

II. THEORY 

A. Band Structure of Bismuth 

The model of the band structure of bismuth which 
we use to interpret the data consists of a set of three 
equivalent electron ellipsoids and a single hole ellip
soid. In one of the electron ellipsoids, the energy E is 
related to the momentum p in the absence of a magnetic 
field by 

E [ l + ( E / £ G ) ] = p.«.p/2f»0 , (1) 

where EG is the energy gap to the next lower band and 
m*=ar1 is the effective mass tensor in units of the free 
electron mass mo. The inverse effective mass tensor a 
is of the form 

{an 0 0 "] 
0 «22 «23 , (2) 

^ 0 «23 «33J 

where 1, 2, and 3 refer to the binary, bisectrix, and 
trigonal axes, respectively. The other two electron 
ellipsoids are obtained by rotations of ±120° about the 
trigonal axis. The energy momentum relationship (1) 
is that predicted by the two-band model8 in which the 
presence of a nearby band at an energy EQ below alters 

2 J. S. Dhillon and D. Shoenberg, Phil. Trans. Roy Soc. London 
A248, 1 (1955). 

3 R. N. Brown, J. G. Mavroides, and B. Lax, Phys. Rev. 129. 
2055 (1963). 

4 J. E. Kunzler, F. S. L. Hsu, and W. S. Boyle, Phys. Rev. 128, 
1084 (1962). 

5 N. B. Brandt and M. V. Razumeenko, Zh. Eksperim. i Teor. 
Fiz. 39, 276 (1960) [English transl.: Soviet Phys.—TETP 12, 
198 (1961)]. 

6 A. A. Abrikosov and L. A. Falkovskii, Zh. Eksperim. i Teor. 
Fiz. 43, 1089 (1962) [English transl.: Soviet Phys.—TETP 16, 
769 (1963)]. 

7 L. A. Falkovskii, Zh. Eksperim. i Teor. Fiz. 44, 1935 (1963) 
[English transl.: Soviet Phys.— JETP 17, 1302 (1963)]. 

8 P. A. Wolff (unpublished). B. Lax, J. G. Mavroides, H. J. 
Zeiger, and R. J. Keyes, Phys. Rev. Letters 5, 241 (1960). 

the energy-momentum dependence from the more usual 
quadratic dependence obtained formally by letting EQ 
in Eq. (1) become infinite. I t should be pointed out that 
the two-band model which leads to Eq. (1) is an approxi
mation in which the influence of all bands other than 
the two separated by EQ are neglected. The validity of 
this approximation will be discussed in Sec. V. 

For the holes, the energy momentum relationship in 
the absence of a magnetic field is taken to be 

E0~E= £(p1
2+p2>)/M1+ (pi/Mz)~], (3) 

which corresponds to an inverse mass tensor 

rv^ — 

ri/Mi 
0 
0 

0 
1/Mi 

0 

0 
0 

1/MZ} 
(4) 

for the holes. E 0 is the energy of the top of the hole 
band relative to the bottom of the electron band. 

The spatial density of carriers in each ellipsoid is 
determined by the Fermi energy EF and is proportional 
to the volume of p space bounded by the surface E—EF. 
The Fermi energy is found by adjusting EF to give equal
ity between the spatial density of holes and that of 
electrons. 

B. Density of States and Fermi Level in the 
Presence of a Magnetic Field 

In the presence of a magnetic field in the z direction, 
the eigenstates of the electron can be labeled by 
quantum numbers n, py, pz and s = = b l . The energy E 
instead of being dependent on px, py and pz, now 
becomes 

E(1+E/EG)= (n+i)huc+pz*/2mz±±gl3oH, (5) 

where oic is the cyclotron frequency 

o)c=eH/mcc, 

and where the longitudinal and the cyclotron masses mz 

and mc are 

w a = h - m * - h , (6a) 

mc= [detm*/w J 1 / 2 . (6b) 

The vector h is a unit vector in the direction of the 
magnetic field H. The effective g factor may be defined 
in terms of a spin mass1 tensor m s by 

g2=4m0
2h-m s-h/detm s . (7) 

The spin and effective masses defined here are those 
taken at the bottom of band {nib). Conventional cyclo
tron masses refer to masses m{Ep) taken at the Fermi 
energy. These masses are related to ours by 

m(EF) = [ 1 + (2EF/EG)~]mh. (8) 

Equality of spin splitting and the Landau spacing 
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implies ms = m^, as is predicted by the two-band model. 
These equations apply to each of the three equivalent 
electron ellipsoids. For the single hole ellipsoid where 
there is no evidence for a two-band picture, the expres
sion (Eo—E) replaces the left-hand side of (5) and, as 
in (3), the tensor ah is used in (6). Similarly, an effective 
spin mass, mSh, may be defined for the holes by Eq. (7). 

From the electron energy (5) and the spatial de
pendence of the wave function (but not the energy) 
on py,

9 one can obtain the spatial density of states 
whose energy is less than EF. 

Ni*(EF) = (2*i*eH/J?c) W 2 

XT,{EF*-E(n,s)}V\ (9) 

where 
EF*=EF(1+EF/E0), (10) 

and 
E(n,s)=(n+i)fc>e+%spogH. (11) 

The sum is over those values of n and of s = d b l such 
that the radicand is positive. The derivative of this 
expression with respect to the Fermi energy gives the 
density of states at the Fermi surface: 

mi'(EF)=(2WeH/»c)(m,)1ti Z i(l+2EF/Ed) 
n,s 

X{EF*-E(n,s)}~^. (12) 

These expressions apply of course to each of the electron 
ellipsoids; for each ellipsoid, the value of mc, mZJ and g 
will be different because each of the three ellipsoids 
has a different orientation. 

For the single hole ellipsoid, the number of states 
whose energy is above EF is 

Nh(EF) = (2*i*eH/tfc) (w,)1/2 

XZ{(Eo~~EF)-E(n,s)yi\ (13) 

and the density of states, the (absolute value of the) 
derivative of this expression with respect to EF is 

%h(EF) = (2^2eH/h2c) (#»„)1/2 

XZH(Eo-EF-E(n,s)}-^. (14) 
n,s 

The sum again goes over values of n and s for which the 
radicand is positive. Charge neutrality requires that 

T,Ni<(EF) = Nh(EF) (IS) 

and this equation determines the Fermi energy. 
The solution of (15) for EF is markedly affected by 

the magnetic field; the Fermi level itself shows oscilla
tory behavior. The shift in Fermi level is one of the rea-

9 A. H. Kahn and P. R. Frederikse, in Solid State Physics, 
edited by F. Seitz and D. Turnbull (Academic Press Inc., New 
York, 1959), Vol. 9. 

sons that the de Haas-van Alphen oscillations are not 
strictly periodic in reciprocal field. I t must be included 
in the analysis of any high-field experiments. 

Having determined the Fermi energy, one can evalu
ate the number of carriers in each pocket and the cor
responding density of states. Maxima in the density of 
states (corresponding to minima in the resistance) can 
then be plotted as a function of field strength and orien
tation. I t is these plots which are fitted to the data by 
adjusting the parameters of the model. 

III. EXPERIMENTAL METHOD 

This experiment originated in an attempt to find 
de Haas-van Alphen type oscillations in the capacitance 
of a structure consisting of a flat surface of single-crystal 
bismuth covered with Formvar and then plated with an 
aluminum layer. The aluminum layer was formed by 
evaporating a 30-mil-diam spot and contact to the spot 
was made with silver paste. Impedance measurements 
were made with a 100 kc/sec bridge. Although there were 
no observable changes in capacitance, the method 
proved to be a convenient way of measuring the oscil
lations in the series resistance of the 30-mil point con
tact on the bismuth slab. To obtain continuous meas
urements as a function of magnetic field, the null 
meter of the bridge was disconnected and a dc micro-
voltmeter put in its place. Balancing the bridge at zero 
magnetic field and plotting the unbalance of the bridge 
as a function of magnetic field on a recorder exhibited 
the oscillations in the resistance. Examples of such 
plots are shown in Figs. 1 and 2. The magnetic field was 
provided by an 88 kG solenoid and the sample was ro
tated with respect to the field direction by a gear ar
rangement in the Dewar. 

To obtain the large relaxation times needed for the 
observation of these oscillations, high-purity zone-
leveled bismuth was used and the measurements were 
made at 1.4°K. Single crystals were grown by the pulling 
technique and cut into crystallographically oriented 
slabs by an acid string saw. Electrical contact was made 

FIG. 1. Impedance bridge unbalance versus magnetic field 
strength for field direction in the y — z plane. The y axis is at 90°. 
Spin splitting of the hole oscillations appear as the field is rotated 
away from the y axis. Quantum numbers for two of these levels 
(w = 5, 5 = zbl) have been indicated on this figure. 
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strength for field direction in the x—z plane. 

to one face of the slab by soldering. The opposite face 
was acid lapped and electropolished. A thin insulating 
layer was deposited on this face either by dipping in a 
Formvar solution or by the Langmuir technique using 
stearic acid or a similar film. Capacitors were formed by 
evaporating an array of 30-mil-diam spots of aluminum 
onto the insulator through a mask. Contact to these 
dots was made using silver paste and aluminum foil 
leads. Typically, the capacitance of the structure was 
10 -9 F and the series resistance of the leads and contact 
was about 100 12. The resistance of the bismuth in
creased from essentially zero at zero field to about 50 0 
at 88 kG. The change in capacitance was less than one 
part in 104. 

IV. RESULTS 

The locations of peaks in the density of states as a 
function of magnetic field were obtained by noting 
minima in the resistance. These points correspond to 
minima in relaxation time resulting from maxima in the 
density of states and at low fields along principal crystal-
lographic orientations, agree with peaks seen by other 
methods, e.g., de Haas-van Alphen effect,2 magneto-
thermal oscillations,4 etc. The usual method of plotting 
periods in A (1/H) as a function of crystallographic 
direction is not applicable to the high-field data pre
sented here since the peaks are no longer periodic in 
1/27. Instead, the peak position in 1/H is plotted as a 
function of crystallographic direction, giving rise to a 
series of curves corresponding to individual Landau 
levels. Such plots are presented in Figs. 3 and 4. 

The calculated plots were obtained using the theory 
presented in Sec. I I I . The calculations were carried 
out using an IBM-7090 computer. Effective masses for 
the electrons and holes are essentially those obtained 
from hybrid resonance experiments10 and are presented 
in Table I . The masses labeled "at Fermi level" are 
taken at the zero-field Fermi level [see Eq. (8)]. The 
energy gap for the electron band, EG= 15.3 meV, was 
obtained from magnetoreflection experiments3 and a 

10 G. E. Smith, L. C. Hebel, and S. T. Buchsbaum, Phys. Rev. 
129, 154 (1963). 

TABLE I. Orbital and spin effective mass components for elec
trons and holes in bismuth. The Fermi energy EF and number of 
carriers are calculated from these masses, the energy gap EQ and 
the band overlap EQ. 

Electrons « n ^22 W33 W23 

Orbital 
at bottom of band 0.00113 0.26 0.00443 -0.0195 
at Fermi energy 0.00521 1.20 0.0204 -0.090 

Spin mass 
at bottom of band 0.00101 2.12 0.0109 -0 .13 
at Fermi energy 0.00466 9.77 0.0502 -0 .60 

Holes Mi = M2 Ms 

Orbital mass 0.064 0.69 
Spin mass 0.033 200 

EG=15.3meV E0 = 38.5 meV 
EF = 27.6 meV # . = #* = 2.75 X1017/cm8 

band overlap of E0=3S.S meV was chosen to fit our 
data. The resulting Fermi energy at zero magnetic field 
is EF = 27.6 meV which agrees with JE^ = 25ZL5 meV 
obtained from magnetoreflection experiments. The total 
number of electrons is calculated from the above 
parameters to be iVe=2.75X1017/cm3 at zero field. 
Cyclotron and spin masses along principal axes are 
presented in Table II and are evaluated at the zero-
field Fermi level. 

The hole and electron spin masses were chosen to fit 
our data and are presented in Table I. The major prob
lem in fitting the data was the assignment of quantum 
numbers (n and s) to the levels. This corresponds to 
choosing a proper shape for the g tensor relative to the 
effective mass tensor and many possibilities were tried. 
The general procedure was to choose a labeling scheme 
and then to vary the parameters to see if a fit could be 
achieved. 

FIG. 3. Peak positions of individual quantum levels as a func
tion of 1/H and field direction for rotation of H in the y — z plane. 
A few levels have been labeled with their quantum numbers (the 
6 + level means n = 6, s= +1) . The solid lines are hole levels and 
the dashed lines are electron levels. 
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EXPERIMENT THEORY 

FIG. 4. Peak positions of individual 
quantum levels as a function of 1/H 
and field direction for rotation of H 
in the x — z plane. The open points are 
the small amplitude electron oscilla
tions in Fig. 2 and the solid points 
are hole oscillations. 

ORIENTATION 

In Figs. 3 and 4 one sees that the hole oscillations 
could be resolved for all orientations. The heaviest 
electron periods can be seen clearly about the binary 
and bisectrix axes but as the magnetic field is rotated 
towards the trigonal axis, oscillations from the other 
two-electron ellipsoids appear and the resolution of the 
peaks is not sufficient to make unambiguous identifica
tions. Because of this, neither theoretical plots or 
experimental lines were drawn in the figures except for 
the few shown at high fields in Fig. 3. 

Experimental plots of quantum number n versus 1/H 
are shown in Fig. 5, for H along the bisectrix axis, and 
in Fig. 6, for H along the binary axis. The hole oscilla
tions depart from periodicity in 1/H at high magnetic 
field in a way which indicates that the Fermi energy is 
dropping monotonically with increasing field. This drop 
in Fermi energy comes about, we believe, because the 
electrons have a lowest quantum level slightly below 
the band minimum (i.e., we believe that g>2mo/mc 

for at least one of the three-electron ellipsoids when the 
field is in this orientation). This single level will move 
down slightly in energy as the field is increased, while all 
the other levels move up in energy. The other levels 
eventually cross the Fermi surface and play no active 
role, leaving this one level beneath the Fermi surface. 

TABLE II. Orbital and spin effective masses for electrons and 
holes in bismuth taken along principal crystallographic axes. 
These masses are evaluated at the zero-field Fermi energy, 
EF = 27.6 meV. 

#||Trigonal axis 

Electrons 
Holes 

27||Binary axis 

Electrons 

Holes 

27||Bisectrix axis 

Electrons 

Holes 

Orbital 

0.065 
0.064 

0.128 
0.0097 
0.21 

0.0084 
0.0168 
0.21 

Spin 

0.11 
0.033 

0.36 
0.0091 
1.5 

0.0079 
0.0158 
1.5 

As the field increases, so too does the number of elec
trons which can be fit into this single Landau level in
crease [see Eq. (13)] and this increase tends to pull 
the Fermi level down. Plots of the variation of Fermi 
level obtained from the calculation are shown for the 
field along three principal axes in Figs. 7, 8, and 9. 
This variation in Fermi level also changes the number of 
carriers in the various electron and hole pockets and 
this variation for H along the binary axis is shown in 
Fig. 10. I t should be made clear that Figs. 5 through 10 
are calculated curves using parameters necessary to 
fit the data and are made plausible by the observed 
variation of hole period with field. 

V. SUMMARY AND CONCLUSIONS 

One major new result from these measurements is 
the observation of a new set of periods which we at-
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FIG. 5. Quantum number n versus 1/H for hole oscillations with 
H along the bisectrix axis. The solid line connects the theoretical 
points. 
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6. Quantum number n versus 1/H for hole oscillations 
along the binary axis. The solid line connects the theoretical 

tribute to spin splitting of the hole band. I t would be 
possible to fit the data by postulating a band contribut
ing a third set of carriers but two coincidences would 
then have to occur: (1) that the new carriers should 
give rise to Landau levels whose spacing, in a magnetic 
field anywhere in the plane perpendicular to the trigonal 
axis, is the same as the spacing of the hole levels and; 
(2) that the amplitudes of the oscillations arising from 
Landau levels in the new band should be equal to the 
amplitude of oscillations arising from the hole Landau 
levels. (See Figs. 1 and 2.) These coincidences imply 
great similarity in the shapes of the new band and the 
hole band. This seems to us to be unlikely. 

The effective g factor for the hole band is quite obvi
ously dependent on the orientation of the magnetic field. 
There is some latitude in the choice of this dependence. 
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The results presented here follow from a choice of g 
in the form given by Eq. (7) with the tensor ms chosen 
to give the largest value of g along the trigonal axis. 
(A polar plot of g would be cigar shaped.) By relabeling 
the levels, it should be possible to fit the data with a 
g factor which is smallest along the trigonal axis 
(pancake shape). Variation of the parameters in Eq. 
(7) to give a pancake shape yields a best fit inferior to 
that of the cigar-shaped g factor. Hence, if the g factor 
is to be pancake shaped, it will have to be at least quartic 
in its dependence on the direction cosines of the field. 
The same can be said for the possibility that the g 
factor be positive along one major axis and negative 
along the other. The cigar-shaped g factor has one other 
feature which strongly recommends it, a feature which 
is related to the symmetry properties of the electronic 
states. I t turns out that Bloch waves whose k vector 
lies along the trigonal axis (where the holes are thought 
to occur) can be of only two basic symmetry types, 
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FIG. 8. Fermi level versus 1/H for H parallel to the 
bisectrix axis. 

designated by Mase11 as A4+A5 and AQ (either with or 
without primes). For one of these types, A4+A5, the 
transverse spin splitting vanishes automatically,12 re
gardless of the existence or energy of other states whose 
k is also along the trigonal axis. That is, for this type 
of state, the g factor is cigar shaped to the extreme. Our 
choice of a cigar-shaped g factor leads to a g factor suf
ficiently elongated for us to identify the hole band as of 
the A4+A5 symmetry type. Mase's tight binding 
calculation (see Fig. 3 of Ref. 11) does, in fact predict 
the hole band as being of this symmetry type. 

The magnitude of the hole g factor was chosen to be 
g~l for the magnetic field perpendicular to the trigonal 
axis. The resolution of the peaks is such, however, that 

8 9 
1/H (GAUSS-1) 

12 13 14 

X10"1 

FIG. 7. Fermi level versus 1/H parallel to the binary axis. 

11 S. Mase, J. Phys. Soc. Japan 13, 434 (1958). 
12

fcE. I.^Blount (private communication). 
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it can only be certain that g<2. With the field parallel 
to the trigonal axis, the spin splitting is almost twice 
the orbital splitting. Although the two-band model 
assumed for the electron band does not permit the spin 
splitting to differ from the orbital splitting, the larger 
effective masses found for the hole band indicate that 
for them a two-band model is not valid, i.e., there are 
other bands nearby in energy which interact with the 
hole band. The presence of other nearby bands admits 
the possibility of a spin splitting larger than the orbital 
splitting provided that there are important bands both 
above and below the hole band.12 

A small (less than 10%) splitting of the electron ellip
soids having the lightest cyclotron masses was observed 
about the binary and bisectrix axes. This could be in
terpreted as a spin splitting either slightly greater than 
or slightly less than the orbital splitting. With a spin 
splitting less than the orbital splitting, the drop in 
Fermi level along the bisectrix axis was not sufficient to 
explain the observed change in the period of the hole 
oscillations, so the larger splitting was chosen. Also, in 
the angular variation in the y—z plane, there appears 
to be a crossing of the 0 + and 1— electron levels at 
about 145° as required by this scheme (see Fig. 3). 

Oscillations with the field in the x—z plane were ob
served and identified as the heavy cyclotron mass elec
tron ellipsoid split by spin. These are the small bumps 
seen in Fig. 2 and plotted as open points in Fig. 4. The 
spin splitting could be larger or smaller than the orbital 
splitting and the case of larger splitting was ruled out 
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FIG. 10. Carrier density versus 1/H for H parallel to the binary 
axis. The symbol N\e refers to the number of carriers in the elec
tron ellipsoid with the heaviest cyclotron mass. 

because some of the levels would have to merge together 
as the field was rotated towards the trigonal axis and 
this was not observed. For the other alternative, the 
choice between a spin splitting one third or two thirds 
of the Landau spacing had to be made. To do this, the 
cyclotron mass of the heavy electron obtained from 
microwave resonance13 was assumed correct and numeri
cally, the one third splitting gave a much better fit. 

The fact that in certain directions the spin splitting 
is greater than the orbital splitting for electrons implies 
deviations from the two-band model and the need to 
consider additional bands. 

One curiosity in the data is the apparent tripling of 
both electron and hole oscillations at high fields for 
orientations about 50° and 130° in Fig. 3. We have no 
good explanation for this phenomenon. 
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FIG. 9. Fermi level versus 1/H for H parallel 
to the trigonal axis. 

13 L. C. Hebel (to be published) has interpreted the resonance at 
3.2 kG in Fig. 9 of Ref. 10 as cyclotron resonance of the heavy 
electron rather than spin resonance as was previously assumed. 
The resonance is a result of a slightly nonlocal current-field rela
tion and is not a tilted orbit cyclotron resonance. 


